
Engineering Requirements for

High-Assurance Applications

Axel van Lamsweerde

University of Louvain

B-1348 Louvain-la-Neuve

avl@info.ucl.ac.be

SecappDev ’08, Leuven, March 2008

High-Assurance Applications (HA)

Applications where compelling evidence is required

that the system delivers its services in a manner that

satisfies certain critical properties such as:

safety,

security,

survivability,

fault tolerance

McLean'95

High-Assurance Applications (2)

Survivability: ability of a system to fulfill its mission

in a timely manner even in the presence of (external)

incidents or attacks

Fault tolerance: ability to avoid or mitigate failure even in

case of fault

Fault: (internal) cause of failure

Failure: deviation between actual & specified behavior

HA applications: problems & challenges

 The later software defects are found,

the more expensive & dangerous they are ...

– Start caring for high assurance early, i.e. at

requirements engineering time

– Preserve high assurance at every transition to

downstream artefacts (architecture, test data, code)

HA applications: problems & challenges (2)

 A posteriori detection & fix of software defects

may endlessly generate other defects ...

– Adopt a constructive approach where

high assurance is granted by construction

HA applications: problems & challenges (3)

 High assurance requires much stronger level of

confidence ...

– Stronger confidence requires more formal elaboration

& analysis (supported by tools)

– Usability at requirements engineering time requires

lightweight techniques

Requirements engineering for HA applications:

problems & challenges

 Requirements Engineering (RE)

translating informal requirements into formal model

 Requirements are not there, you need to ...

– elicit them,

– evaluate them,

– structure & document them,

– analyze them,

– modify them

RE: the WHY, WHAT, WHO dimensions

goalsWHY?

WHAT?

WHO?

operationalization

responsibility
assignment

requirements,

assumptions

domain
knowledge

RE: an iterative process

start

domain analysis

& elicitation

evaluation

& negotiation

alternative proposals

agreed
requirements

documented requirements

consolidated
requirements

specification

& documentation

validation

& verification

Requirements engineering is hard ...

 System = software + environment (possibly malicious)

 Involves 2 systems: system-as-is, system-to-be

 Ranges from high-level, strategic objectives

to detailed, technical requirements

 Requires evaluation of alternatives

 Raises conflicting concerns

 Requires anticipation of unexpected behaviors

(for requirements completeness, system robustness)

Security engineering: problem space vs. solution space

Software layers

Security guarantee

Application

System / Languages

Protocols

Crypto

Crypto

Protocols

Syst / Lang

Applic

encryption, signature

authentication, key exchange

remote file access, SSH, SSL, ...

e-shopping

Focus of these lectures

 Critical properties in HA systems

 In particular: security at upper, application layer

 Application is secure iff it satisfies a “complete” set

of security goals

– about confidentiality, integrity, availability, privacy, ...

 Necessary condition for application security:

security goals must be made explicit, precise,

complete, adequate, non-conflicting

– Goal-oriented: to ensure that requirements satisfy

system objectives -- notably, safety, security goals

– Incremental: for early analysis of partial models

– Constructive: for analyst guidance & confidence

– Model-based: for abstraction & structure

Multiple models: for capturing multiple facets

– Mix declarative and operational styles as needed

– Formal when and where needed, but lightweight

A RE method for HA applications should be ...

Course outline

 Goal-oriented RE for high-assurance applications

– Modeling goals, objects, agents, operations, behaviors

– A goal-oriented model building method in action

– Obstacle analysis for high assurance

– Formal reasoning about models

 Engineering security requirements

– Security goals and their specification

– Threat analysis for model consolidation

– Analyzing conflicts among security goals

– Model checking against confidentiality requirements

What models ?

Goals Agents, responsibilities

Objects Operations

on what?

who ?
why ?
how ?

what ?

What models ? (2)

BehaviorsInteraction scenarios

Hazards Threats

I

The goal model

 Intentional view of the system being modeled

 Goal = objective to be achieved by system ...

– prescriptive statement of intent about system

– system (as-is, to-be) = software + environment

“E-money shall be paid only if sufficient e-purse balance”

 ... unlike domain property ...

– descriptive statement about environment

“Paid money is no longer in purse”

Goals in a goal model have different
granularities & abstraction levels

 Higher-level, coarser-grained goals ...

strategic, global, business-specific

“Cash-free payment supported anywhere anytime”

 Lower-level, finer-grained goals ...

technical, local, design-specific

“E-purses shall have a max capacity of X euros”

Goals in a goal model are of different types

 Behavioral goals prescribe maximal sets of admissible
system behaviors

Achieve [TargetCondition]:

if CurrentCondition then sooner-or-later TargetCondition

Achieve [E-moneyMovedAsNeeded]

Maintain [GoodCondition]:

always (if CurrentCondition then GoodCondition)

Maintain [E-moneyAccuratelyStored]

Avoid [BadCondition]:
never (if CurrentCondition then BadCondition)

Avoid [E-purseBalanceDisclosedToNonOwners]

Behavioral goals prescribe intended behaviors
declaratively

eMoneyPaid OnlyIf
SufficientBalance

balanceOK
item paid

balanceKO
item not paid

balanceKO
item not paid

balanceOK
item paid

Goals in a goal model are of different types (2)

 Soft goals prescribe preferences among alternative
system behaviors

– cannot be established in a clear-cut sense

– used to compare alternative options

Improve, Increase, Reduce, ... [TargetCondition]

Reduce [BankClerkWorkload]

Achieve [ePurseLoadedAtATM]

preferred over

Achieve [ePurseLoadedAtBank]

Goals in a goal model are of different categories

 Functional goals state intent behind system services

– Used to build operational models: use cases, state
machines, task workflows, ...

EmoneyMovedFromEpurseToPayTerminal

 Quality goals constrain quality of service (“non-

functional goals”)

– About security, safety, accuracy, usability, cost,

performance, interoperability, etc.

Maintain [eMoneyStoredAccurately], Improve [PurseUsability]

– Some are softgoals (e.g. “ility” goals)

– Often conflicting

The goal model shows contribution links

eMoneyStored
Accurately

Effective E-PurseSystem

eMoneyMovedAsNeeded BalanceKnown

... FromPayTerminal
ToBank

FromPurseTo
PayTerminal

FromBank
ToPurse

...

AmountPaid
If Sufficient

Balance

Amount
Known

Amount
Agreed

...

ePurse
Loaded
atBank

ePurse
Loaded
atATM

refinement /
abstraction

alternatives Cancelled
If Insufficient

Balance

ePurse
Inserted

Refining a security soft goal into behavioral goals

OnEpurse

Reduce [RiskOfAbuse]

Maintain [Balance
BetweenLimits]

Maintain [Balance
LowerBound]

Maintain [Balance
UpperBound]

OnPayTerminal

Goal specifications annotate the goal model

Goal Achieve [AmountPaid If SufficientBalance]

Def A payment shall be done for some input amount through e-

purse debit and pay terminal credit if the amount is OK-ed by the

payer and the e-purse balance is higher or equal to this amount

[FormalSpec ep: e-Purse, pterm: PayTerminal, p: Payer

Inserted (ep, p, pterm) OK (pterm.InputAmount, p)

pterm.InputAmount ep.Balance

(pterm.Balance = pterm.Balance + pterm.InputAmount

ep.Balance = ep.Balance - pterm.InputAmount)]

[Priority Highest]
...

Optional formalization in real-time temporal logic

(“next”, “always”, “sooner-or-later”, ...) for formal reasoning

Goal satisfaction requires agent cooperation

 Agent = role (rather than individual)

responsible for goal satisfaction

Achieve [eMoneyMovedFromPurseToPayTerminal]

Payee, Payer, ePurse, PayTerminal

 Agent types:

– software
(software-to-be, legacy software, COTS components,
foreign components)

– devices (sensors, actuators, ...)

– humans playing specific roles

Goal satisfaction requires agent cooperation (2)

 Finer-grained goal fewer agents required
for goal satisfaction

 Requirement = goal assigned to single agent in
software-to-be

Achieve [AmountDebitedIfSufficientBalance]

ePurse

Achieve [AmountCreditedIfDebited]

PayTerminal

 Expectation = goal assigned to single agent in
environment

Achieve [AmountAgreed] Payer

Goals are refined until single responsibilities
can be assigned

eMoneyStored
Accurately

Effective E-PurseSystem

eMoneyMovedAsNeeded BalanceKnown

... FromPayTerminal
ToBank

FromPurseTo
PayTerminal

FromBank
ToPurse

...

AmountPaidIf
SufficientBalance

Amount
Known

Amount
Agreed

...

ePurse
Loaded
atBank

ePurse
Loaded
atATM

...

Debited Credited
Payee Payer

ATM e-Purse PayTerminalenvironment agent

ePurse
Inserted

WHY are goals so important ?

 Abstraction level for strategic stakeholders
(decision makers)

 Force environment assumptions to be made explicit

 Criterion for requirements completeness

REQ is complete if for all G:

{REQ, EXPECT, Dom} G

 Criterion for requirements relevance

r in REQ is pertinent if for some G:

r is used in {REQ, EXPECT, Dom} G

High assurance requires satisfaction arguments

 Informal argument at least, formal argument at best

R, E, D |— G

“ in view of properties D of the domain,
the requirements R will achieve goals G

under expectations E ”

R1: amount debited from e-purse

R2: same amount credited to pay terminal

D: amount paid if debited from e-purse and credited to terminal

E: amount agreed by payer

|— G: amount agreed and paid

 A goal model supports satisfaction arguments &
traceability links for free

What models ?

Goals Agents & responsibilities

Objects Operations

on what?

Modeling objects

 Structural view of the system being modeled

 Object = thing of interest in the system
whose instances ...

– share similar features (attributes, associations)

– can be distinctly identified
– have specific behavior from state to state

 Object attributes/associations yield state variables

 Object specializations (at meta level):
– entity: autonomous object

– association: object dependent on objects it links

– event: instantaneous object

– agent: active object, controls behaviors

The structure of objects is modeled using UML

Owns

PaysFor

Payment

Amount

0..1

0..1

From

Item

Price

1

*

in any system state, an e-purse may be
involved in at least 0 and at most 1 e-payment

Payer

Money

Payee

Money

PaidFor

ePayment

Track#

ePurse

Balance

PayTerminal

Balance

InputAmount

AgreedAmount

To

Holds

1 1

1

0..11

*

10..1

Purse

...

Object specifications annotate the object model

Relationship Payment

Def Condition for an item to be sold by a payee to a payer

DomInvar An item is paid if its price is debited from the payee

and credited to the payer

[FormalSpec it: Item, pyr: Payer, pye: Payee

Payment (pyr, pye, it) pyr.Money = pyr.Money - it.Price

pye.Money = pye. Money + it.Price]

domain properties

What models ?

Goals Agents & responsibilities

Objects Operations

who ?

Modeling agents

 Responsibility view of the system being modeled:

who is in charge of what

 Agent :
– (Role rather than individual -- software, device, human)

– Active object: monitors & controls state variables
(through operations on attrib, assoc)

– Runs concurrently with others

– Agent responsible for goal

must restrict system behaviors

goal must be realizable by agent

Goal realizability by an agent

 A goal is realizable by an agent iff its monitoring &

control capabilities enable it/her to satisfy the goal in

view of known domain properties (without more

restrictions than required by G)

 A goal is unrealizable by an agent because of ...

– lack of monitorability of variables to be evaluated

– lack of controllability of variables to be constrained

– reference to future

– conditional unsatisfiability (aka conflict with other goals)

– unbounded achievement (liveness property)

Goal realizability & agent capabilities: examples

ePurse
AgreedAmount ePurse.Balance

Example 1: Realizable by ePurse

AgreedAmount ep.Balance ep.Balance = ... - ...

pterm.InputAmount ep.Balance

pterm.Balance = ... + ... ep.Balance = ... - ...

Example 2: Not realizable by ePurse

ControlsMonitors

ePurse

ePurse

Modeling agents: responsibility view

Pay
Terminal

Payee
Authenticated

AgreedAmount
Credited

Receipt
Generated

TransactionCancelled
If InsufficientBalance

Alternative agent assignments define
alternative system boundaries

Unload
Controller

Bank
Clerk

OR-AssignmentEmoneyUnloaded
FromPayTerminalToBank

Modeling agents: interface view

 Interface among agents =

monitored/controlled state variables

(attributes/relationships from object model)

 Interface view = context diagram

variables monitored by ag1
& controlled by ag2

ag1 ag2

variables controlled by ag1
& monitored by ag2

Context diagram: example

ep.Balance

AgreedAmount

ePurse

Pay
Terminal

PayeePayer
InputAmount

pt.Balance

AgreedAmount

What models ?

Goals

Objects Operations

Agents & responsibilities

what ?

Modeling operations

 Functional view of the system being modeled:

what services are to be provided? (statics)

 Operation Op:

– relation Op InputState OutputState

– Op must operationalize underlying goals

– Op applications define state transitions (events) in

behavioral model

– Op applications are concurrent with others

– Op is atomic: maps to state at next smallest time unit

(operations with duration: use start/end events)

Specifying operations

– Name, Def

– DomPre: condition characterizing the class of
input states in the domain

– DomPost: condition characterizing the class of

output states in the domain

– Links to other models:

Operationalization (goals), Input/Output (objects),

Performance (agent)

Specifying operationalizations

 An operationalization of G into Op is specified by:

– ReqPre: necessary condition on Op's input states to

ensure G (permission)

– ReqTrig: sufficient condition on Op's input states to
ensure G :

requires immediate application of Op provided
DomPre holds (obligation)

– ReqPost: condition on Op's output states to ensure G

 Consistency rule: ReqTrig DomPre ReqPre

Specifying operations: example

Operation ePay

Def Operation controlling the e-payment for an item

Input ep: ePurse, pt: PayTerminal; Output ePayment

DomPre There is no ePayment from ep to pt

DomPost There is an ePayment from ep to pt

ReqPre For AgreedAmountPaidIfSufficientBalance:

pt.AgreedAmount ep.Balance

ReqPost For AgreedAmountPaidIfSufficientBalance:

ep.Balance = ep.Balance - pt.AgreedAmount

ReqTrig For InstantPaymentUponAgreement:

The amount is agreed and the balance is sufficient

What models ?

BehaviorsInteraction scenarios

Hazards Threats

I

Goals, scenarios, state machines: win-win partners

+ declarative
+ many behaviors

- too abstract?

+ concrete examples
- partial, few behaviors

+ model-checkable, executable
- hard to build, understand

Scenarios as simple MSCs

agent instance interaction event

time

guard

partial order on events
total order along timeline

negative

positive

P Q

P || Q

Composition operator ∥

Train Controller LTS

Modeling behaviors with LTS

 An agent is modeled as a LTS

 System behavior = composition
of agent behaviors

– Agents behave
asynchronously but
synchronize on shared
events

– Composition: ||-operator

Scenarios vs. behavior models

 A scenario defines paths in a behavior model

– a path in each agent LTS

– a path in the system’s LTS (||)

Train Controller Composed system

Goals vs. scenarios

DoorsClosed
WhileMoving

Covers

:Passenger:Train:Controller

entrance

doors
opening

doors
closing

move

arrival

doors
opening

arrival

 A behavioral goal prescribes a set of scenarios

Goals, objects, agents, operations:
the semantic picture

object

states

agents

operations

smallest
time unit

goals

time

Course outline

 Goal-oriented RE for high-assurance applications

– Modeling goals, objects, agents, operations, behaviors

– A goal-oriented model building method in action

– Obstacle analysis for high assurance

– Formal reasoning about models

 Engineering security requirements

– Security goals and their specification

– Threat analysis for model consolidation

– Analyzing conflicts among security goals

– Model checking against confidentiality requirements

Model building in KAOS

1. Domain analysis:

refine/abstract goals

SafeTransportation

NoTrainSameBlock

Building a goal model: heuristics & tips

 Early discovery of goals ...

– Analysis of system-as-is

problems, deficiencies, technology opportunities

goals of S2B: Avoid / Reduce / Improve them

– Search for intentional & prescriptive keywords in
documents available, interview transcripts, etc.

- in order to, so as to, so that, ...

- has to, must, to be, must be, shall, ensure, want, motivate,

expected to, ...

- purpose, objective, aim, concern, ...

refinement links: in order to X the system has to Y

Building a goal model: heuristics & tips (2)

 Later discovery of goals ...

– by abstraction (bottom-up):

asking WHY? questions about...

lower-level goals

interaction scenarios

other operational material available

– by refinement (top-down):

asking HOW? questions about goals available

– by use of refinement patterns (cf. below)

– by resolution of obstacles, threats, conflicts (cf. below)

Building a goal model: HOW / WHY questions

eMoneyStored
Accurately

Effective E-PurseSystem

eMoneyMovedAsNeeded BalanceKnown

FromPayTerminal
ToBank

FromPurseTo
PayTerminal

FromBank
ToPurse

...

AmountPaidIf
SufficientBalance

Amount
Known

Amount
Agreed

ePurse
Loaded
atBank

ePurse
Loaded
atATM

...

Debited Credited
Payee PayerATM

e-Purse PayTerminal

HOW?

WHY?

...

Building a goal model: heuristics & tips (3)

 Abstract goals … until when ?

... until boundary of system capabilities is reached

e.g. MakePeopleHappy is beyond system’s capabilities

 Refine goals … until when ?

... until assignable to single agents as ...

– requirement (software agent)

– expectation (environment agent)

Model building in KAOS

Train Block
0:1

On

1. Domain analysis:

refine/abstract goals

SafeTransportation

2. Domain analysis:

derive/structure
objects

NoTrainSameBlock

Model building in KAOS

Train Block
0:1

On

1. Domain analysis:

refine/abstract goals

SafeTransportation

2. Domain analysis:

derive/structure
objects

3. S2B analysis:

enriched goals
(alternatives)

SafeComdNoTrainSameBlock

Model building in KAOS

Train Block
0:1

On

SafeTransportation

CommandDriving

4. S2B analysis:

enriched objects
from new goals

SafeComdNoTrainSameBlock

1. Domain analysis:

refine/abstract goals

2. Domain analysis:

derive/structure
objects

3. S2B analysis:

enriched goals
(alternatives)

The object model is derivable from the goal model

Goal Maintain [BlockSpeedLimited]

InformalDef A Train should stay below
the max speed the block can handle

FormalDef tr: Train, ts: TrackSegment
On (tr, ts) tr.Speed ts.SpeedLimit

OnTrain

Speed: SpeedUnit
...

TrackSegment

SpeedLimit: SpeedUnit
...

Systematic, no "hocus pocus" (confessed by UML gurus)

completeness & pertinence of object model

Object model derivation: more formally ... (2)

Goal Maintain [WC-SafeDistanceBetwTrains]

InformalDef A Train should stay sufficiently far to avoid
hitting the train in front in case of sudden stop

FormalDef tr1, tr2: Train

Following (tr1, tr2) tr1.Loc - tr2.Loc tr1.WCS-Dist

OnTrain

Speed: SpeedUnit

Loc: Location

WCS-Dist: Distance

TrackSegment

SpeedLimit: SpeedUnit
...

Following

Model building in KAOS

Train Block
0:1

On
SafeAcceler

SafeTransportation

CommandDriving
5. Responsibility analysis:

agent OR-assignment

SafeComdNoTrainSameBlock

1. Domain analysis:

refine/abstract goals

2. Domain analysis:

derive/structure
objects

3. S2B analysis:

enriched goals
(alternatives)

4. S2B analysis:

enriched objects
from new goals

Context diagrams can be derived from goals

Many behavioral goals take the form

G: CurrentCondition [monitoredVariables]

[sooner-or-later/always]

TargetCondition [controlledVariables]

ep.BalanceAgreedAmount ePurse

Pay
Terminal

AgreedAmount ep.Balance

oep.Balance = ep.Balance - AgreedAmount

...

Model building in KAOS

Train Block
0:1

On
SafeAcceler

SafeTransportation

CommandDriving

6. Operationalization
& behavior analysis

Send
Command

OnBoardController

:OBC

SafeComdNoTrainSameBlock

1. Domain analysis:

refine/abstract goals

2. Domain analysis:

derive/structure
objects

3. S2B analysis:

enriched goals
(alternatives)

4. S2B analysis:

enriched objects
from new goals

5. Responsibility analysis:
agent OR-assignment

1-5. Obstacle & conflict
analysis

Course outline

 Goal-oriented RE for high-assurance applications

– Modeling goals, objects, agents, operations, behaviors

– A goal-oriented model building method in action

– Obstacle analysis for high assurance

– Formal reasoning about models

 Engineering security requirements

– Security goals and their specification

– Threat analysis for model consolidation

– Analyzing conflicts among security goals

– Model checking against confidentiality requirements

Modeling what could go wrong:

obstacle analysis

 Problem: goals are often too ideal, will be violated

(unexpected or malicious agent behaviors)

 Obstacle = condition on system for goal violation

{ O, Dom } |= ¬ G obstruction

Dom | ¬ O domain consistency

exists system behavior S s.t. S |= O feasibility

 Particular cases

obstruction of safety goal: obstacle = hazard

obstruction of security goal: obstacle = threat

Obstacle analysis for

increased reliability & security

 Anticipate obstacles ...

new goals (countermeasures) deidealized model

more complete, realistic requirements

more robust system

Obstacle models as goal-anchored fault trees

WorstCaseStoppingDistanceMaintained

AccelerationSent
InTimeToTrain

SafeAcceleration
Computed

SentCommand
ReceivedByTrain

ReceivedCommand
ExecutedByTrain

Obstacle models as goal-anchored fault trees

Acceleration
NotSafe

AccelerationCommand
Not

SentInTimeToTrain

NotSent

WorstCaseStoppingDistanceMaintained

AccelerationSent
InTimeToTrain

SafeAcceleration
Computed

SentCommand
ReceivedByTrain

ReceivedCommand
ExecutedByTrain

AccelerationCommand
Not

ReceivedInTimeByTrain

...

SentLate SentToWrongTrain...

ReceivedLate

CorruptedNotReceived

Obstacle analysis

 For every leaf goal in refinement graph

(requirement or expectation):

– identify as many obstacles to it as possible

– assess their likelihood & severity

– resolve them according to likelihood/severity

Obstacle identification

 For obstacle to goal G:

– negate G;

– find as many AND/OR refinements of ¬ G as

possible in view of domain properties ...

– ... until reaching obstruction preconditions that are

feasible (through a system scenario)

= goal-anchored fault-tree construction

Obstacle identification: example

MotorReversedIffMovingOnRunway

MotorReversed
IffWheelsTurning

MovingOnRunway
IffWheelsTurning

Obstacle identification: example

NOT
MovingOnRunway
IffWheelsTurning

NOT
MotorReversed
IffWheelsTurning

MotorReversedIffMovingOnRunway

MotorReversed
IffWheelsTurning

MovingOnRunway
IffWheelsTurning

obstruction

Obstacle identification: example

NOT
MovingOnRunway
IffWheelsTurning

NOT
MotorReversed
IffWheelsTurning

MotorReversed
AndNot

WheelsTurning

MotorReversedIffMovingOnRunway

MotorReversed
IffWheelsTurning

MovingOnRunway
IffWheelsTurning

obstruction

OR-refinement
(complete)

WheelsTurning
AndNot

MotorReversed

MovingOnRunway
AndNot

WheelsTurning

WheelsTurning
AndNot

MovingOnRunway

not (X1 and X2)
equiv

not X1 or not X2

Obstacle identification: example

NOT
MovingOnRunway
IffWheelsTurning

NOT
MotorReversed
IffWheelsTurning

MotorReversed
AndNot

WheelsTurning

Aquaplaning ...

MotorReversedIffMovingOnRunway

MotorReversed
IffWheelsTurning

MovingOnRunway
IffWheelsTurning

obstruction

OR-refinement
(complete)

WheelsTurning
AndNot

MotorReversed

MovingOnRunway
AndNot

WheelsTurning

WheelsTurning
AndNot

MovingOnRunway

WheelsNotOut WheelsBroken

...

not (X1 and X2)
equiv

not X1 or not X2

Obstacle assessment & resolution

 To assess likelihood & severity of identified
obstacle: cfr. risk management techniques

 To resolve identified obstacle:

– at RE time: model transformation

- generate alternative resolutions

- select “best” resolution based on ...

- likelihood/severity of obstacle

- other non-functional/quality goals

– at run-time (for non-severe, occasional obstacles):

obstacle monitoring, run-time resolution

(cf. specification-based intrusion detection)

Generating obstacle resolutions

 Use of model transformation operators encoding
resolution tactics

– Goal substitution: consider alternative refinement of

parent goal to avoid obstruction of child goal

MotorReversed Iff WheelsTurning

MotorReversed Iff PlaneWeightSensed

– Agent substitution: consider altern. responsibilities

OnBoardTrainController VitalStationComputer

– Goal weakening

TrafficControllerOnDutyOnSector

TrafficControllerOnDutyOnSector or WarningToNextSector

Generating obstacle resolutions (2)

 Model transformation operators (cont'd):

– Goal restoration: enforce target condition at obstacle
occurrence

ResourceNotReturnedInTime ReminderSent

WheelsNotOut WheelsAlarmGenerated

– Obstacle prevention: new Avoid goal
AccelerationCommandCorrupted

Avoid [AccelerationCommandCorrupted]

– Obstacle mitigation: tolerate obstacle but mitigate
its effects

OutdatedSpeed/PositionEstimates

Avoid [TrainCollisionWhenOutDatedTrainInfo]

Course outline

 Goal-oriented RE for high-assurance applications

– Modeling goals, objects, agents, operations, behaviors

– A goal-oriented model building method in action

– Obstacle analysis for high assurance

– Formal reasoning about models

 Engineering security requirements

– Security goals and their specification

– Threat analysis for model consolidation

– Analyzing conflicts among security goals

– Model checking against confidentiality requirements

Formal reasoning about system models ...

 To support more accurate analysis & derivations

– Checking refinements & operationalizations

– Generating obstacles to goals

– Generating attack graphs

– Analyzing conflicts

– Synthesizing behavior models from scenarios & goals

– Goal-oriented model animation

 Optional "button”: only when & where needed

 Requires formal specifications to annotate models

Some bits of real-time linear temporal logic

oP: P shall hold in the next state

o P: P shall hold in every future state

P W N: P shall hold in every future state
unless N holds

P: P shall hold in some future state

o T P: P shall hold in every future state
up to T time units

T P: P shall hold within T time units

+ past operators: P, P, P, ...

P Q : o (P Q)

@ P : (¬ P) P

Specifying goals in RT-LTL

Goal Maintain [DoorsClosedUntilNextStation]

FormalSpec tr: Train, s: Station

At (tr, st) o ¬ At (tr, st)

tr.Doors = "closed" W At (tr, next(st))

Goal Achieve [FastJourneyBetweenStations]

FormalSpec tr: Train, s: Station

At (tr, st) T At (tr, next(st))

Achieve P, Cease P

Maintain P , Avoid P : goal specification patterns

Goal-oriented spec of operations

Operation SendCommand

Input tr, tr ’: Train

Output cm: CommandMsg

DomPre ¬ Sent (cm, tr)

DomPost Sent (cm, tr)

ReqPost for SafeCommandMsg

Following (tr, tr’)

cm.Accel F (tr, tr’) cm.Speed G (tr)

ReqTrig for CommandMsgSentInTime

 0.5 sec ¬ cm': Sent (cm', tr)

Formal reasoning: refinement checking

 A set of assertions {A1, ..., An} correctly refines

assertion A in domain theory Dom iff

{A1, ..., An, Dom} A completeness

{A1, ..., An, Dom} false consistency

{ j iAj , Dom} A for each i [1..n] minimality

 Refinement checking =

– Check that a refinement is correct

– If not, suggest missing sub-assertions Ai

 Can be used for checking goal models, obstacle models,
anti-goal models; and reveal missing subgoals,
subobstacles, vulnerabilities (completeness is essential!)

Refinement checking: using refinement patterns

 Build catalogue of refinement patterns that
encode refinement tactics

 Prove patterns formally, once for all

 Reuse through instantiation, in matching situation

 Some frequent patterns:

C C W TC D T C D

C T

M TC M

C T

milestone-driven case-driven

Checking a goal refinement with patterns

Achieve [TrainProgress]

On(tr, b) On(tr, next(b))

Achieve [ProgressWhenGo]

On (tr, b) Go[next(b)]

On (tr, next(b))

Achieve [SignalSetToGo]

On (tr, b) Go[next(b)]

missing subgoal !!
detectable automatically

Checking goal refinements with patterns

Maintain [TrainWaiting]

On (tr, b)

On (tr, b) W On (tr, next(b))

Achieve [TrainProgress]

On(tr, b) On(tr, next(b))

Achieve [ProgressWhenGo]

On (tr, b) Go[next(b)]

On (tr, next(b))

Achieve [SignalSetToGo]

On (tr, b) Go[next(b)]

case-driven

Patterns provide guidance in formal refinement

P Q

P R Q ?

P Q

P R Q P P W Q

R R

P R

P R R

from pattern

catalogue

different

designs

Patterns provide guidance in formal refinement (2)

Use formal pattern => reuse formal proof

1. P R

2. P R Q

3. P P W Q

4. P P U Q) qP

5. P Q qP

6. P R Q qP

7. P R Q) R qP

8. P R Q) R P

9. P R Q) Q

10. P R Q) Q

11. P Q

hyp

thesis

p
ro

o
f

Resolving goal unrealizability:
the Introduce Accuracy goal pattern

 WHEN:
agent ag cannot monitor variable m to realize G [m]

 WHAT:
– introduce monitorable image im of m

– generate refinement :

G

G[p(m)/q(im)]p(m) q(im)

Generating refinements & assignments

MovingOnRunway o ReverseThrustEnabled

Introduce Accuracy goal: example

unmonitorable
by autopilot

Generating refinements & assignments

MovingOnRunway o ReverseThrustEnabled

MovingOnRunway
PlaneWeightSensed

PlaneWeightSensed
o ReverseThrustEnabled

Autopilot

expectation requirement

unmonitorable
by autopilot

WeightSensor

Introduce Accuracy goal: example

 Refinement by case
– Applicable when goal achievement space can be partitioned

into cases

Formal refinement patterns can be used informally

GoalToBeEnsured

GoalToBeEnsured
WhenCase2

GoalToBeEnsured
WhenCase1

case-driven refinement

ResourceRequestSatisfied

ResourceReserved
WhenNotAvailable

ResourceAllocated
WhenAvailable

case-driven refinement

– Example of use:

 Refinement by milestone
– Applicable when milestone states can be identified on the

way to the goal's target condition

Formal patterns can be used informally (2)

TargetStateReached

TargetStateReached
FromMilestone

MilestoneState
Reached

milestone-driven refinement

WorstCaseStoppingDistanceMaintained

AccelerationSent
InTimeToTrain

SafeAcceleration
Computed

– Example of use:

SentCommand
ReceivedByTrain

ReceivedCommand
ExecutedByTrain

Informal use of patterns can reveal errors

milestone goals

cases

 Refinement towards goal realizability

Formal patterns can be used informally (3)

UnrealizableGoalOnUnControllableCondition

GoalOnControllable
Condition

UnControllableCondition
IffControllableCondition

resolve lack of controllability

UnrealizableGoalOnUnMonitorableCondition

GoalOnMonitorable
Condition

UnMonitorableCondition
IffMonitorableCondition

resolve lack of monitorability

child node may be goal (incl. requirement, expectation)

or domain property (invariant/hypothesis)

Refinement towards goal realizability: example of use

Formal patterns can be used informally (4)

DoorsClosedWhileMoving

MovingIff
NonZeroSpeed

resolve lack of monitorability

DoorsClosedWhileNonZeroSpeed

requirement domain invariant

NurseInterventionWhenCriticalPuseRate

AlarmIff
CriticalPulseRate

NurseIntervention
WhenAlarm

resolve lack of controllability

expectation requirement

Refinement checking: roundtrip use of bounded

SAT solver

 Incremental check/debug of model fragments

 On selected object instances (propositionalization)

 With bounded traces (to be given)

 Ouput:

OK (no counterexample found within trace bound)

KO + counter-example scenario satisfying

G1 ... Gn Dom G

Check demo

Refinement checker

Formal reasoning:

abductive generation of obstacles

 Aim: Find O such that

0, Dom |-- ¬ G , Dom | ¬ O

 Approach 1: Use precondition calculus to get ¬ G
from Dom

= regression of goal negation through domain theory

 Approach 2: Use formal obstruction patterns

Generating obstacles by regression

MovingOnRunway o ReverseThrustEnabled

MovingOnRunway

WheelsTurning

WheelsTurning

o ReverseThrustEnabled

expectation

? ?

requirement

Generating obstacles by regression

Find precondition for obstruction of ...

MovingOnRunway WheelsTurning

goal negation:

MovingOnRunway ¬ WheelsTurning

regress through Dom:

? necessary conditions for wheels turning ?

WheelsTurning ¬ Aquaplaning

i.e. Aquaplaning ¬ WheelsTurning

RHS unifiable:

MovingOnRunway Aquaplaning

Warsaw obstacle

Generating obstacles by regression

Find precondition for obstruction of ...

MovingOnRunway WheelsTurning

goal negation:

MovingOnRunway ¬ WheelsTurning

regress through Dom:

? necessary conditions for wheels turning ?

WheelsTurning ¬ Aquaplaning

i.e. Aquaplaning ¬ WheelsTurning

RHS unifiable:

MovingOnRunway Aquaplaning

Warsaw obstacle

Generating obstacles by regression

Find precondition for obstruction of ...

MovingOnRunway WheelsTurning

goal negation:

MovingOnRunway ¬ WheelsTurning

regress through Dom:

? necessary conditions for wheels turning ?

WheelsTurning ¬ Aquaplaning

i.e. Aquaplaning ¬ WheelsTurning

RHS unifiable:

MovingOnRunway Aquaplaning

Warsaw obstacle

Generating obstacles by regression

Find precondition for obstruction of ...

MovingOnRunway WheelsTurning

goal negation:

MovingOnRunway ¬ WheelsTurning

regress through Dom:

? necessary conditions for wheels turning ?

WheelsTurning ¬ Aquaplaning

i.e. Aquaplaning ¬ WheelsTurning

RHS unifiable:

MovingOnRunway Aquaplaning

Warsaw obstacle

... or use formal obstruction patterns

 Very frequent pattern, used in this example:

domain property:
necessary condition for

target condition

obstacle
T NC ¬ N

C T

C ¬ T

 Can be used to elicit domain properties as well

Some frequent obstruction patterns

T P(C o ¬ T U ¬ P))

C T

(C o ¬ T)

starvation

(C o ¬ M) C T ¬ T W M)

C T

(C o ¬ T)

milestone

backward chain

(C B) B ¬ T

C o T

(C ¬ T)

Some frequent obstruction patterns

T P(C o ¬ T U ¬ P))

C T

(C o ¬ T)

starvation

(C o ¬ M) C T ¬ T W M)

C T

(C o ¬ T)

milestone

backward chain

(C B) B ¬ T

C o T

(C ¬ T)

Example of pattern instantiation

Gets (u, r)
¬ coalition (u, r)

u: User, r: Resource
Requests (u, r) Gets (u, r)

u: User, r: Resource

(Requests (u, r) o ¬ Gets (u, r))

starvation

u: User, r: Resource

(Requests (u, r)

o ¬ Gets (u, r) U coalition (u, r)))

Course outline

 Goal-oriented RE for high-assurance applications

– Modeling goals, objects, agents, operations, behaviors

– A goal-oriented model building method in action

– Checking goal refinements

– Obstacle analysis for high-assurance applications

 Engineering security requirements

– Security goals and their specification

– Threat analysis for model consolidation

– Analyzing conflicts among security goals

– Model checking against confidentiality requirements

Application-level security

 Application is secure iff meets security goals

 Security goal refers to environment assets to be

protected against undesired behaviors

Confidentiality, integrity, availability, privacy,

accountability, non-repudiation, ...

 Threat = obstacle to security goal

 Security countermeasure = obstacle resolution

Specification patterns for security goals

 Confidentiality goals

Avoid [SensitiveInfoKnownByUnauthorizedAgent]

ag: Agent, ob: Object

Authorized (ag, ob.Info) KnowsVag (ob.info)

KnowsVag (v) x: Knowsag (x = v)

Knowsag (P) Beliefag (P) P

“P is in ag’s memory”

 Other patterns for privacy, availability, integrity,

authentication, non-repudiation, ...

Application-specific instantiation of
security goal patterns

Goal Avoid [SensitiveInfoKnownByUnauthorizedAgent]

ag: Agent, ob: Object

Authorized (ag, ob.Info) KnowsVag (ob.info)

Web banking services

Object / Account [#, PIN]

Authorized (ag, acc)

Owner (ag, acc) Proxy (ag, acc) Manager (ag, acc)

Goal Avoid [PaymentMediumKnownBy3rdParty]

p: Person, acc: Account

[Owner (p, acc) Proxy (p, acc) Manager (p, acc)]

[KnowsVp (acc.Acc#) KnowsVp (acc.PIN)]

Application-specific instantiation of
security goal patterns

Goal Avoid [SensitiveInfoKnownByUnauthorizedAgent]

ag: Agent, ob: Object

Authorized (ag, ob.Info) KnowsVag (ob.info)

Web banking services

Object / Account [#, PIN] sensitive info in object model

Authorized (ag, acc)

Owner (ag, acc) Proxy (ag, acc) Manager (ag, acc)

Goal Avoid [PaymentMediumKnownBy3rdParty]

p: Person, acc: Account

[Owner (p, acc) Proxy (p, acc) Manager (p, acc)]

[KnowsVp (acc.Acc#) KnowsVp (acc.PIN)]

Application-specific instantiation of
security goal patterns

Goal Avoid [SensitiveInfoKnownByUnauthorizedAgent]

ag: Agent, ob: Object

Authorized (ag, ob.Info) KnowsVag (ob.info)

Web banking services

Object / Account [#, PIN] sensitive info in object model

Authorized (ag, acc)

Owner (ag, acc) Proxy (ag, acc) Manager (ag, acc)

Goal Avoid [PaymentMediumKnownBy3rdParty]

p: Person, acc: Account

[Owner (p, acc) Proxy (p, acc) Manager (p, acc)]

[KnowsVp (acc.Acc#) KnowsVp (acc.PIN)]

Further patterns for confidentiality goals

 Two dimensions of confidentiality:

– Degree of approximate knowledge to be kept

confidential

– Timing along which knowledge should be kept

confidential

 Pattern catalogue

– Provides standard specification patterns

– Hides complicate formulas

Specification patterns for confidentiality goals

forever

Until

Unless

upTo

Now

Valfullbetwublbval

degree of knowledge

Timing Of
Knowledge

Zooming on some patterns…

full-confidential-forever

Specification patterns: a sample

Fully confidential value

Confidential forever

Full-Confidentialag(x)

v ran(x): Knowsag(x v)

Y-Confidential-foreverag(x)

w: x = w Y-Confidentialag(x)

with Y {val, lb, ub, betw, full}

ep: ePurse, ag: Agent

Owns(ag, ep) ag ep

full-Confidential-foreverag(ep.balance)

Specification by pattern instantiation:

Course outline

 Goal-oriented RE for high-assurance applications

– Modeling goals, objects, agents, operations, behaviors

– A goal-oriented model building method in action

– Checking goal refinements

– Obstacle analysis for high-assurance applications

 Engineering security requirements

– Security goals and their specification

– Threat analysis for model consolidation

– Analyzing conflicts among security goals

– Model checking against confidentiality requirements

Threat analysis: unintentional vs. intentional threats

 Unintentional threat: inadvertent violation of security goal

– Handled by obstacle analysis on security leaf goals

– E.g. accidental disclosure of confidential information

 Intentional threat: proactive violation of security goal by
exploitation of unprotected data & system knowledge
acquired through malicious behaviors, calculations,
deductive inference, etc.

– Handled by obstacle analysis augmented with malicious

agents, their anti-goals, and their capabilities

– E.g. E-shopping: Achieve[ItemReceivedAndNotPaid]

Intentional threats require an anti-model

 The scope of the environment is extended to include
malicious agents (“attackers”)

– human insiders or outsiders of the original system,
tools, fake devices, ...

 Anti-goal = malicious obstacle to satisfy

attacker’s objectives (and break security goals)

 Anti-model = model linking anti-goals against

a goal model

Intentional threats require an anti-model (2)

 An anti-model is a dual model ...

– the software is now part of the attacker’s
environment

– domain properties include software vulnerabilities

 Threat graph = refinement graph showing a plan ...

– to achieve some anti-goal

– in view of the attacker’s capabilities

Analyzing intentional threats: attacker’s capabilities

 Capabilities = two sets of conditions:

– conditions that are monitorable by the attacker

– conditions that are controllable by the attacker

e.g. e-shopping: ItemPaidByCustomer,

PaymentNotificationReceivedBySeller

 Most Knowledgeable Attacker (MKA):

– Knows the goal model, the domain properties used in
it, and the operation model

Trivially satisfied as attacker at RE time is the modeller
looking for missing countermeasures

Worst-case threat analysis is desirable for complete
exploration of security countermeasures

Threat analysis for intentional threats

 Build threat graphs from anti-goals:

– Get initial anti-goals to be refined/abstracted --e.g.,
from negations of application-specific security goal

– Identify attackers wishing them, their capabilities

– Build anti-goal refinement/abstraction graphs until
reaching conditions that are realizable by the attackers
(monitorable or controllable)

 Derive new security goals as countermeasures to
counter the leaf anti-goals in threat graphs

Step 1: Get initial anti-goals

 Negate security goal instantiation to application-

specific “sensitive” objects ...

Goal Avoid [PaymentMediumKnownBy3rdParty]

p: Person, acc: Account

Authorized (p, acc)

[KnowsVp (acc.Acc#) KnowsVp (acc.PIN)]

goal negation

Anti-Goal Achieve [PaymentMediumKnownBy3rdParty]
p: Person, acc: Account

Authorized (ag, acc)

KnowsVp (acc.Acc#) KnowsVp (acc.PIN)

Step 1: Get initial anti-goals

 Negate security goal instantiation to application-

specific “sensitive” objects ...

Goal Avoid [PaymentMediumKnownBy3rdParty]

p: Person, acc: Account

Authorized (p, acc)

[KnowsVp (acc.Acc#) KnowsVp (acc.PIN)]

goal negation

Anti-Goal Achieve [PaymentMediumKnownBy3rdParty]
p: Person, acc: Account

Authorized (p, acc)

KnowsVp (acc.Acc#) KnowsVp (acc.PIN)

Step 2: Identify attackers wishing anti-goals

 For each initial anti-goal:

- ask WHO might benefit from it

- use of attacker taxonomies

Anti-Goal Achieve[PaymentMediumKnownBy3rdParty]

Insiders: Bank QA team
Organization-specific agents

Outsiders: Thieves
Hackers
Terrorists, ...

Step 3: Build threat graph

 For each (initial anti-goal, attacker): build anti-goal

refinement/abstraction graph ...

– Informally: by use of refinement patterns or by
WHY/HOW questions

WHY parent anti-goals

HOW child anti-goals

Formally: by regression through ...

... domain properties P AG

anti-goal preconditions satisfiable in domain

... goal specs from attacked model

preconditions satisfiable by attacked software

Step 3: Build threat graph

 For each (initial anti-goal, attacker): build anti-goal

refinement/abstraction graph ...

– Informally: by use of refinement patterns or by
WHY/HOW questions

WHY parent anti-goals

HOW child anti-goals

– Formally: by regression through ...

... domain properties P AG

anti-goal preconditions satisfiable in domain

... goal specs from attacked model

preconditions satisfiable by attacked software

Anti-goal refinement by regression through domain

Anti-Goal Achieve [PaymentMediumKnownBy3rdParty]

p: Person, acc: Account

Authorized (p, acc) KnowsVp (Acc#) KnowsVp (PIN)

domain property as sufficient condition ?

p: Person, acc: Account
Authorized (ag, acc) KnowsVp (acc.PIN)

(x: Acc#) (Found (p, x) Matching (acc.PIN, x))

KnowsVp (acc.Acc#) KnowsVp (acc.PIN)

anti-subgoal:

p: Person, acc: Account

Authorized (ag, acc) KnowsVp (acc.PIN)

(x: Acc#) (Found (p, x) Matching (acc.PIN, x))

Anti-goal refinement by regression through domain

Anti-Goal Achieve [PaymentMediumKnownBy3rdParty]

p: Person, acc: Account

Authorized (p, acc) KnowsVp (Acc#) KnowsVp (PIN)

dom prop as sufficient condition ?

p: Person, acc: Account
Authorized (p, acc) KnowsVp (acc.PIN)

(x: Acc#) (Found (p, x) Matching (acc.PIN, x))

KnowsVp (acc.Acc#) KnowsVp (acc.PIN)

anti-subgoal:

p: Person, acc: Account

Authorized (ag, acc) KnowsVp (acc.PIN)

(x: Acc#) (Found (p, x) Matching (acc.PIN, x))

Anti-goal refinement by regression through domain

Anti-Goal Achieve [PaymentMediumKnownBy3rdParty]

p: Person, acc: Account

Authorized (ag, acc) KnowsVp (Acc#) KnowsVp (PIN)

dom prop as sufficient condition ?

p: Person, acc: Account
Authorized (ag, acc) KnowsVp (acc.PIN)

(x: Acc#) (Found (p, x) Matching (acc.PIN, x))

KnowsVp (acc.Acc#) KnowsVp (acc.PIN)

anti-subgoal:

p: Person, acc: Account

Authorized (p, acc) KnowsVp (acc.PIN)

(x: Acc#) (Found (p, x) Matching (acc.PIN, x))

Build threat graph: refine until ...

 ... terminal conditions are reached ...

– anti-requirements

realizable in terms of attacker’s capabilities

– vulnerabilities of attackee

properties of anti-domain

Refinement towards realizability by attacker:
a known attack

PaymentMediumKnownBy3rdParty

PinKnown&
MatchingAccountFound

AccountKnown&
MatchingPinFound

Refinement towards realizability by attacker:
a known attack

PaymentMediumKnownBy3rdParty

PinKnown&
MatchingAccountFound

AccountKnown&
MatchingPinFound

PinKnown MatchingAccount
Found

AccountKnown MatchingPin
Found

Refinement towards realizability by attacker:
a known attack

PaymentMediumKnownBy3rdParty

PinKnown&
MatchingAccountFound

AccountKnown&
MatchingPinFound

PinKnown MatchingAccount
Found

AccountKnown MatchingPin
Found

...

AccountChecked
ForPinMatch

CheckIteratedOnOther
AccountsIfNoMatch

Check
Repeatable

vulnerabilityrealizable

realizable

realizable

Deriving countermeasures

 New security goals obtained by application of

resolution operators, e.g.

– Avoid [anti-goal]:

Avoid [AccountCheckRepeatableFromPin]

Avoid [PinCheckRepeatableFromAccount]

– Make vulnerability condition unmonitorable by
attacker

– Make anti-requirement uncontrollable by attacker

 To be further refined along alternative OR-branches
in the updated goal model

Online shopping: functional goals

ItemOrderedByBuyer 7d ItemReceivedByBuyer

ItemOrdered

2d ItemPaid

ItemPaid

2d ItemSent

ItemPaid

1d BELIEFS(ItemPaid)

ItemSent

3d ItemReceived

BELIEFS(ItemPaid)

1d ItemSent

Seller

ItemPaid

8h PaymentReceived

PaymentReceived

8h NotificationSent
NotificationSent

8h NotificationReceived

NotificationReceived

BELIEFS(ItemPaid)

Seller

ShippingCo

2d ItemSent

ItemPaid

Online shopping: a security goal

ItemOrderedByBuyer 7d ItemReceivedByBuyer

ItemOrdered

2d ItemPaid

ItemPaid

2d ItemSent

ItemPaid

1d BELIEFS(ItemPaid)

ItemSent

3d ItemReceived

BELIEFS(ItemPaid)

1d ItemSent

Seller

ItemPaid

8h PaymentReceived

PaymentReceived

8h NotificationSent
NotificationSent

8h NotificationReceived

NotificationReceived

BELIEFS(ItemPaid)

Seller

ShippingCo

2d ItemSent

ItemPaid

Online shopping: anti-goal

ItemOrderedByBuyer 7d ItemReceivedByBuyer

ItemOrdered

2d ItemPaid

ItemPaid

2d ItemSent

ItemPaid

1d BELIEFS(ItemPaid)

ItemSent

3d ItemReceived

BELIEFS(ItemPaid)

1d ItemSent

Seller

ItemPaid

8h PaymentReceived

PaymentReceived

8h NotificationSent
NotificationSent

8h NotificationReceived

NotificationReceived

BELIEFS(ItemPaid)

Seller

ShippingCo

2d ItemSent
ItemPaid

2d ItemSent

ItemPaid

Online shopping: anti-goal model

ItemOrderedByBuyer 7d ItemReceivedByBuyer

ItemOrdered

2d ItemPaid

ItemPaid

2d ItemSent

ItemPaid

1d BELIEFS(ItemPaid)

ItemSent

3d ItemReceived

BELIEFS(ItemPaid)

1d ItemSent

Seller

ItemPaid

8h PaymentReceived

PaymentReceived

8h NotificationSent
NotificationSent

8h NotificationReceived

NotificationReceived

BELIEFS(ItemPaid)

Seller

ShippingCo

2d ItemSent
ItemPaid

1d BELIEFS(ItemPaid)
ItemPaid

2d ItemSent

ItemPaid

Online shopping: anti-goal model

ItemOrderedByBuyer 7d ItemReceivedByBuyer

ItemOrdered

2d ItemPaid

ItemPaid

2d ItemSent

ItemPaid

1d BELIEFS(ItemPaid)

ItemSent

3d ItemReceived

BELIEFS(ItemPaid)

1d ItemSent

Seller

ItemPaid

8h PaymentReceived

PaymentReceived

8h NotificationSent
NotificationSent

8h NotificationReceived

NotificationReceived

BELIEFS(ItemPaid)

Seller

ShippingCo

2d ItemSent
ItemPaid

1d BELIEFS(ItemPaid)
ItemPaid

1d NotificationReceived

2d ItemSent

ItemPaid

Online shopping: anti-goal model

ItemOrderedByBuyer 7d ItemReceivedByBuyer

ItemOrdered

2d ItemPaid

ItemPaid

2d ItemSent

ItemPaid

1d BELIEFS(ItemPaid)

ItemSent

3d ItemReceived

BELIEFS(ItemPaid)

1d ItemSent

Seller

ItemPaid

8h PaymentReceived

PaymentReceived

8h NotificationSent
NotificationSent

8h NotificationReceived

NotificationReceived

BELIEFS(ItemPaid)

Seller

ShippingCo

2d ItemSent
ItemPaid

1d BELIEFS(ItemPaid)
ItemPaid

1d NotificationReceived

Attacker
16h FakeNotificSent

Online shopping: goal model with countermeasures

ItemOrderedByBuyer ItemReceivedByBuyer

ItemOrdered

ItemPaid

ItemPaid

ItemSent

ItemPaid

BELIEF(Seller, ItemPaid)

ItemSent

ItemReceived

...

BELIEF(Seller, ItemPaid)

ItemSent

Seller

ItemPaid

PaymentReceived

PaymentReceived

NotificationSent

NotificationSent

NotificationReceived
Paypal

NotifReceived

ConfirmRequested

ConfirmRequested

PaymentConfirmed

BELIEFS(ItemPaid)

ConfirmRequested
PaymentReceived

PaymentConfirmed

Seller

• Modeling terrorist threats (anti-goal model)

• RE for on-board threat detection & reaction system

Application:

Security of Aircraft in the Future European Environment

(External threats)

Threats against crew & passengers

Threats from baggage area

Automated synthesis of threat graphs

 Builds a proof showing realizability of anti-goal in
view of attacker’s capabilities & knowledge of
environment

 Capabilities = Boolean state variables (atomic
conditions that are monitorable/controllable)

 Based on BDD representation of anti-goal

 Weakens powerful macro-agent by removal of

capabilities, following BDD state-variable ordering

Synthesizing attack graphs (plan generation)

Attacker anti-goal:
ItemPaidByCustomer ItemSentToCustomer

Attacker capabilities:
Controls ItemPaidByCustomer, NotificationReceived
Monitors --

Course outline

 Goal-oriented RE for high-assurance applications

– Modeling goals, objects, agents, operations, behaviors

– A goal-oriented model building method in action

– Checking goal refinements

– Obstacle analysis for high-assurance applications

 Engineering security requirements

– Security goals and their specification

– Threat analysis for model consolidation

– Analyzing conflicts among security goals

– Model checking against confidentiality requirements

Conflict analysis

 Divergence is most frequent case of conflicting goals,
requirements or assumptions:

potential logical inconsistency

 Goals G1, ..., Gn are divergent iff

there exists a boundary condition B :

{ B, i Gi, Dom} |= false inconsistency

{ B, i i Gj, Dom} | false minimality

exists system behavior S s.t. S |= B feasibility

Divergence frequently involves security goals

Maintain[ReviewerAnonymity]:
Reviews (r, pap, rep) AuthorOf (a, pap)

o ¬ Knows (a, Reviews(r, pap, rep))

Achieve[ReviewIntegrity]:

Reviews (r, pap, rep) AuthorOf (a, pap)
Gets (a, rep’, pap, r) rep’ = rep

Boundary condition: r, pap, a, rep, rep ’

Reviews (r, pap, rep) AuthorOf (a, pap)
Gets (a, rep’, pap, r) rep’ = rep

French (r) ¬ r’ r: Expert (r’) French (r’)

Divergence frequently involves security goals

Maintain[ReviewerAnonymity]:
Reviews (r, pap, rep) AuthorOf (a, pap)

o ¬ Knows (a, Reviews[r, pap, rep])

Achieve[ReviewIntegrity]:

Reviews (r, pap, rep) AuthorOf (a, pap)
Gets (a, rep’, pap, r) rep’ = rep

Boundary condition: r, pap, a, rep, rep ’

Reviews (r, pap, rep) AuthorOf (a, pap)
Gets (a, rep’, pap, r) rep’ = rep

French (r) ¬ r’ r: Expert (r’) French (r’)

Conflict analysis (2)

 Detecting divergence:

– by regression: derive B as precondition for ¬ Gi from

{ i i Gj, Dom}

– by use of formal conflict patterns

 Resolving divergence: resolution operators

– avoid boundary condition: o ¬ B

– restore divergent goals: B i Gi

– anticipate conflict: P T ¬ P

– weaken goals, specialize objects, etc.

Deriving boundary condition for conflict

By regression:

AtStation o ¬ AtStation DoorsClosed W AtNext

 (Stopped Alarm) DoorsOpen

negate G1:

AtStation o ¬ AtStation

¬AtNext U (DoorsOpen ¬AtNext)

regress ¬ G1 through G2:

AtStation o ¬ AtStation

¬AtNext U (Stopped Alarm ¬AtNext)

boundary condition for conflict

Deriving boundary condition for conflict

By regression:

AtStation o ¬ AtStation DoorsClosed W AtNext

 (Stopped Alarm) DoorsOpen

negate G1:

AtStation o ¬ AtStation

¬AtNext U (DoorsOpen ¬AtNext)

regress ¬ G1 through G2:

AtStation o ¬ AtStation

¬AtNext U (Stopped Alarm ¬AtNext)

boundary condition for conflict

Deriving boundary condition for conflict

By regression:

AtStation o ¬ AtStation DoorsClosed W AtNext

 (Stopped Alarm) DoorsOpen

negate G1:

AtStation o ¬ AtStation

¬AtNext U (DoorsOpen ¬AtNext)

regress ¬ G1 through G2:

AtStation o ¬ AtStation

¬AtNext U (Stopped Alarm ¬AtNext)

boundary condition for conflict

Course outline

 Goal-oriented RE for high-assurance applications

– Modeling goals, objects, agents, operations, behaviors

– A goal-oriented model building method in action

– Checking goal refinements

– Obstacle analysis for high-assurance applications

 Engineering security requirements

– Security goals and their specification

– Threat analysis for model consolidation

– Analyzing conflicts among security goals

– Model checking against confidentiality requirements

CONCHITA: checking requirements models against
confidentiality claims

 Given ...
– an object model (entities, associations, agents)
– a list of requirements
– assumed confidentiality requirements
– claimed confidentiality requirements

 Find a finite trace ...
– satisfying the requirements

– where an agent instance can acquire knowledge that
violates one of the confidentiality claims

+ Explain how the agent acquired this knowledge

Implementation:
Bounded Model Checking, Finite instantiation,
CSP solver (efficient arithmetic and search space pruning)

specified with
patterns

Running CONCHITA on e-Purse system:
trace leading to information disclosure

Time0

Time1

Alice Bob

ePurse1
Balance: 0 Inserted

Owns Has
PayTerminal1

inputAmount: 4
amountAgreed: true

Alice

ePurse1
Balance:0

Owns
Bob

Has
PayTerminal1

Credit: 0
amountAgreed: false

Time0 |= ePurse1.Balance < 4

+ explanation = knowledge fragments used in the deduction

no payment
because

insufficient balance

Example of axioms about unauthorized agent (UA)

Maximal Input at any time, UA knows the value
of every non confidential variable

Ex: seller knows the amount that is entered in
the terminal

Example of axioms about unauthorized agent (UA)

Maximal Input at any time, UA knows the value
of every non confidential variable

UA knows all the requirements the
software implements and all the
properties of the domain.

Perfect
System
knowledge

Ex: the seller knows that payment is denied
in case of insufficient balance.

Example of axioms about unauthorized agent (UA)

Maximal Input at any time, UA know the value
of every non confidential variable

Perfect Recall UAs always remember facts and
properties they used to know in the past.

UAs know all the requirements the
software implements and all the
properties of the domain.

Perfect
System
knowledge

Ex: at time1, the seller remembers the entered
amount, the insertion of the e-Purse, …

Conclusion

 Rich models are essential for HA applications

– multiple dimensions: intentional, structural,
responsibility, operational, behavioral

– software + environment (e.g., humans, devices, other
software, mother Nature, attacker, attackee)

start thinking about high assurance at RE time

– alternative refinements, assignments, resolutions

– seamless transition from high-level concerns to
operational requirements

Conclusion (2)

 The building of such models is hard & critical;

should therefore be guided by methods…

– systematic

– top-down + bottom-up

– incremental

– supporting the analysis of partial models

Conclusion (3)

 Goal-based reasoning is central for...

– model building & elaboration of requirements

– exploration & evaluation of alternatives

– conflict management

– anticipation of hazards and threats

(requirements-level exception handling)

Conclusion (4)

 Goal completeness can be achieved through multiple

means ...

– refinement checking =>

missing subgoals, subobstacles, threats/vulnerabilities

– obstacle/threat analysis => countermeasure goals

– animation (not discussed here)

Conclusion (5)

 Be pessimistic from beginning about software and
environment

hazards, threats, conflicts

 Benefits of multi-button framework

– semi-formal ...
for modeling, navigation, traceability

– formal, when and where needed ...

for precise, incremental reasoning on model pieces

Thanks ...

 To the KAOS crew at UCL, CETIC & RESPECT-IT
as researchers, consultants, or tool developers

C. Damas, A. Dardenne, R. Darimont,

R. De Landtsheer, E. Delor, B. Lambeau, E. Letier,

P. Massonet, C. Ponsard, A. Rifaut, H. Tran Van

 To Steve Fickas and his group at Univ. Oregon

 To the EU & Region of Wallonia for significant

funding of those efforts

More information available ...

 ... on the method & associated techniques in:

A. van Lamsweerde, Requirements Engineering - From
System Goals to UML Models to Software
Specifications. Wiley, 2008.

www.info.ucl.ac.be/~avl

 ... on tools at:

http://www.objectiver.com

http://faust.cetic.be

Relevant papers

A. van Lamsweerde, "Requirements Engineering in the Year 00: A Research
Perspective". Keynote Paper, Proc. ICSE'2000 - Intl Conf on Software
Engineering, June 2000, IEEE CS Press, pp. 5-19.

R. Darimont & A. van Lamsweerde, “Formal Refinement Patterns for Goal-Driven
Requirements Elaboration”. Proc. FSE-4 - Fourth ACM Conf on Foundations
of Software Engineering, San Francisco, Oct. 1996, 179-190.

E. Letier & A. van Lamsweerde, “Agent-Based Tactics for Goal-Oriented
Requirements Elaboration”, Proc. ICSE'2002 - 24th Intl Conf on Software
Engineering, Orlando, May 2002, IEEE CS Press, 83-93.

A. van Lamsweerde & E. Letier, “Handling Obstacles in Goal-Oriented
Requirements Engineering”, IEEE Transactions on Software Engineering,
Special Issue on Exception Handling, Vol. 26, No. 10, October 2000.

E. Letier & A. van Lamsweerde, “Deriving Operational Software Specifications
from System Goals”, Proc FSE'2002 - 10th ACM Conf on the Foundations of
Software Engineering, Charleston (South Carolina), November 2002.

E. Letier and A. van Lamsweerde, “Reasoning about Partial Goal Satisfaction for
Requirements and Design Engineering”, Proc FSE’04, 12th ACM Intl Symp.
Foundations of Software Engineering, Newport Beach (CA), Nov. 2004.

Relevant papers (2)

A. van Lamsweerde, “Elaborating Security Requirements by Construction of
Intentional Anti-Models”, Proc ICSE’04 - 26th Intl Conf on Software
Engineering, Edinburgh, May. 2004, ACM-IEEE, 148-157.

R. De Landtsheer & A. van Lamsweerde, “Reasoning about Confidentiality at
Requirements Engineering Time”, Proc. ESEC/FSE’05, 13th ACM Intl Symp.
on the Foundations of Software Engineering, Lisbon, Sept. 2005, 41-49.

A. van Lamsweerde, R. Darimont & E. Letier, Managing Conflicts in Goal-Driven
Rquirements Engineering, IEEE Transactions on Software Engineering,
Vol. 24 No. 11, November 1998, pp. 908 - 926.

C. Damas, B. Lambeau, P. Dupont & A. van Lamsweerde, “Generating Annotated
Behavior Models from End-User Scenarios”, IEEE Transactions on Software
Engineering, Vol. 31, No. 12, December 2005, 1056-1073.

H. Tran Van, A. van Lamsweerde, P. Massonet, Ch. Ponsard, “Goal-Oriented
Requirements Animation”, Proc RE’04, 12th IEEE Joint Intl Requirements
Engineering Conference, Kyoto, Sept. 2004, 218-228.

